About Us

About Us

NCCR Robotics is a consortium of robotics laboratories across Switzerland, working on robots for improving the quality of life and to strengthen robotics in Switzerland and worldwide. Newsletter

NCCR Robotics

NCCR Robotics

Intelligent Robots for Improving the Quality of Life The National Centre of Competence in Research (NCCR) Robotics is a Swiss nationwide organisation funded by the Swiss National Science Foundation… Read more

Announcement of a new NCCR Robotics associate PI: Laura Marchal Crespo

We are happy to announce that Prof. Laura Marchal-Crespo from ARTORG Center for Biomedical Engineering Research, University of Bern, has joined our NCCR Robotics community as associate PI in December 2017. Please join us welcoming Prof. Marchal-Crespo – her competences will be a great contribution to our research. – Dario Floreano (NCCR Director) and Robert Riener (NCCR Co-director) Laura Marchal-Crespo is an Assistant Professor at the …

Looking for publications? You might want to consider searching on the EPFL Infoscience site which provides advanced publication search capabilities.

Design and Computational Modeling of a Modular, Compliant Robotic Assembly for Human Lumbar Unit and Spinal Cord Assistance


Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 51

Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 51

Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 52
  • Authors:
    Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 57
    Agarwal, Gunjan; Robertson, Matthew Aaron; Sonar, Harshal Arun; Paik, Jamie

Wearable soft robotic systems are enabling safer human-robot interaction and are proving to be instrumental for biomedical rehabilitation. In this manuscript, we propose a novel, modular, wearable robotic device for human (lumbar) spine assistance that is developed using vacuum driven, soft pneumatic actuators (V-SPA). The actuators can handle large, repetitive loads efficiently under compression. Computational models to capture the complex non-linear mechanical behavior of individual actuator modules and the integrated assistive device are developed using the finite element method (FEM). The models presented can predict system behavior at large values of mechanical deformations and allow for rapid design iterations. It is shown that a single actuator module can be used to obtain a variety of different motion and force profiles and yield multiple degrees of freedom (DOF) depending on the module loading conditions, resulting in high system versatility and adaptability, and efficient replication of the targeted motion range for the human spinal cord. The efficacy of the finite element model is first validated for a single module using experimental results that include free displacement and blocked-forces. These results are then extended to encompass an extensive investigation of bio-mechanical performance requirements from the module assembly for the human spine-assistive device proposed.

Posted on: November 1, 2017

FlyJacket: An Upper Body Soft Exoskeleton for Immersive Drone Control


Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 51

Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 51

Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 52
  • Authors:
    Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 57
    Rognon, Carine; Mintchev, Stefano; Dell'Agnola, Fabio Isidoro Tiberio; Cherpillod, Alexandre Thierry; Atienza Alonso, David; Floreano, Dario
Posted on: June 22, 2018

Soft Pneumatic Actuator Fascicles for High Force and Reliability


Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 51

Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 51

Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 52
  • Authors:
    Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 57
    Robertson, Matthew Aaron; Sadeghi, Hamed; Florez, Juan Manuel; Paik, Jamie

Soft pneumatic actuators (SPAs) are found in mobile robots, assistive wearable devices, and rehabilitative technologies. While soft actuators have been one of the most crucial elements of technology leading the development of the soft robotics field, they fall short of force output and bandwidth requirements for many tasks. Additionally, other general problems remain open including robustness, controllability, and repeatability. The SPA-pack architecture presented here aims to satisfy these standards of reliability crucial to the field of soft robotics, while also improving the basic performance capabilities of SPAs by borrowing advantages leveraged ubiquitously in biology; namely the structured parallel arrangement of lower power actuators to form the basis of a larger, more powerful actuator module. An SPA-pack module consisting of a number of smaller SPAs will be studied using an analytical model and physical prototype. Experimental measurements show an SPA-pack to generate over 112 N linear force, while the model indicates the benefit of parallel actuator grouping over a geometrically equivalent single SPA scales as an increasing function of the number of individual actuators in the group. For a module of four actuators, a 23 % increase in force production over a volumetrically equivalent single SPA is predicted and validated, while further gains appear possible up to 50 %. These findings affirm the advantage of utilizing a fascicle structure for high-performance soft robotic applications over existing monolithic SPA designs. An example high-performance soft robotic platform will be presented to demonstrate the capability of SPA-pack modules in a complete and functional system.

Posted on: September 20, 2016

User-driven walking assistance: first experimental results using the MyoSuit*


Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 51

Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 51

Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 52
  • Authors:
    Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 57
    Haufe, Florian L.; Kober, Alessia M.; Schmidt, Kai; Sancho-Puchades, Alejandro; Duarte, Jaime E.; Wolf, Peter; Riener, Robert

Tweet

Posted on: November 5, 2019