NCCR Robotics publishes open source software and datasets, please see below for a list and links to where they can be downloaded. Robogen RoboGen™ is an open source platform… Read more
Talks, Lectures & Weblinks
NCCR Robotics supports and promotes seminars and talks by invited speakers in the partner institutions. addd Diego Pardos talk from Feb 2017 RI Seminar: Davide Scaramuzza : Micro… Read more




Can't see who you were looking for? You might want to try browsing by lab or looking in the A-Z people list.
Looking for publications? You might want to consider searching on the EPFL Infoscience site which provides advanced publication search capabilities.
Variable stiffness material based on rigid low-melting-point-alloy-microstructures embedded in soft poly(dimethylsiloxane) (PDMS)
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 52
Materials with controllable stiffness are of great interest to many fields, including medicine and robotics. In this paper we develop a new type of variable stiffness material based on the combination of a rigid low-melting-point-alloy (LMPA) microstructure embedded in soft poly(dimethylsiloxane) (PDMS). This material can transition between rigid and soft states by controlling the phase of the LMPA through efficient, direct Joule-heating of the LMPA microstructure. The devices tested demonstrate a relative stiffness change of > 25x (elastic modulus is 40 MPa when LMPA is solid and 1.5 MPa when LMPA is liquid) and a fast transition from rigid to soft states (< 1 s) at low power (< 500 mW). Additionally, the material possesses inherent state (soft and rigid) and strain sensing (GF = 0.8) based on resistance changes.