Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 52
In this thesis we tackle the problem of goal-oriented adaptation of a robot hitting motion. We propose the parameters that must be learned in order to use and adapt a basic hitting motion to play minigolf. Then, two different statistical methods are used to learn these parameters. The two methods are evaluated and compared. To validate the proposed approach, a minigolf control module is developed for a robotic arm. Using the different learning techniques, we show that a robot can learn the non-trivial task of deciding how the ball should be hit for a given position on a minigolf field. The result is a robust minigolf-playing system that outperforms most human players using only a small set of training examples.