About Us

About Us

NCCR Robotics is a consortium of robotics laboratories across Switzerland, working on robots for improving the quality of life and to strengthen robotics in Switzerland and worldwide. Newsletter

People

People

NCCR Robotics is organised around a number of research groups and labs. The lead members of each lab are shown below, follow the links to learn more about each… Read more

Past Events

Date/Time Event Description
29 Oct – 31 Oct 2018
9:00 am – 5:00 pm
Conference on Robot Learning (CoRL 2018) CoRL 2018 will take place on October 29-31 2018 in Zurich. The conference focuses on the intersection of robotics and machine learning. CoRL aims at being a selective, top-tier venue...

Looking for publications? You might want to consider searching on the EPFL Infoscience site which provides advanced publication search capabilities.

EMG-based decoding of grasp gestures in reaching-to-grasping motions


Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 51

Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 51

Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 52
  • Authors:
    Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 57
    Batzianoulis, Iason; El Khoury, Sahar; Pirondini, Elvira; Coscia, Martina; Micera, Silvestro; Billard, Aude

Predicting the grasping function during reach-to-grasp motions is essential for controlling a prosthetic hand or a robotic assistive device. An early accurate prediction increases the usability and the comfort of a prosthetic device. This work proposes an electromyographic-based learning approach that decodes the grasping intention at an early stage of reach-to-grasp motion, i.e. before the final grasp/hand pre-shape takes place. Superficial electrodes and a Cyberglove were used to record the arm muscle activity and the finger joints during reach-to-grasp motions. Our results showed a 90% accuracy for the detection of the final grasp about 0.5 s after motion onset. This paper also examines the effect of different objects’ distances and different motion speeds on the detection time and accuracy of the classifier. The use of our learning approach to control a 16-degrees of freedom robotic hand confirmed the usability of our approach for the real-time control of robotic devices.

Posted on: January 20, 2017