Looking for publications? You might want to consider searching on the EPFL Infoscience site which provides advanced publication search capabilities.

Concurrent Optimization of Mechanical Design and Locomotion Control of a Legged Robot


Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 51

Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 51

Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 52
  • Authors:
    Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 57
    Digumarti, K. M.; Gehring, C.; Coros, S.; Hwangbo, J.; Siegwart, R.

This paper introduces a method to simultaneously optimize design and control parameters for legged robots to improve the performance of locomotion based tasks. The morphology of a quadrupedal robot was optimized for a trotting and bounding gait to achieve a certain speed while tuning the control parameters of a robust locomotion controller at the same time. The results of the optimization show that a change of the structure of the robot can help increase its admissable top speed while using the same actuation units.

Posted on: July 16, 2014

Elastic-Actuation Mechanism for Repetitive Hopping Based on Power Modulation and Cyclic Trajectory Generation


Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 51

Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 51

Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 52
  • Authors:
    Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 57
    Shin, Won Dong; Stewart, William; Estrada, Matt A.; Ijspeert, Auke J.; Floreano, Dario

Tweet

Posted on: July 27, 2022

Quadrupedal locomotion using hierarchical operational space control


Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 51

Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 51

Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 52
  • Authors:
    Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 57
    Hutter, M.; Sommer, H.; Gehring, C.; Hoepflinger, M.; Bloesch, M.; Siegwart, R.

This paper presents the application of operational space control based on hierarchical task optimization for quadrupedal locomotion. We show how the behavior of a complex robotic machine can be described by a simple set of least squares problems with different priorities for motion, torque, and force optimization. Using projected dynamics of floating base systems with multiple contact points, the optimization dimensionality can be reduced or decoupled such that the formulation is purely based on the inversion of kinematic system properties. The present controller is extensively tested in various experiments using the fully torque controllable quadrupedal robot StarlETH. The load distribution is optimized for static walking gaits to improve contact stability and/or actuator efficiency under various terrain conditions. This is augmented with simultaneous joint position and torque limitations as well as with an interpolation method to ensure smooth contact transitions. The same control structure is further used to stabilize dynamic trotting gaits under significant external disturbances such as uneven ground or pushes. To the best of our knowledge, this work is the first documentation of static and dynamic locomotion with pure task-space inverse dynamics (no joint position feedback) control.

Posted on: July 16, 2014