Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
52
Future neuroprosthetic devices, in particular upper limb, will require decoding and executing not only the user’s intended movement type, but also when the user intends to execute the movement. This work investigates the potential use of brain signals recorded non-invasively for detecting the time before a self-paced reaching movement is initiated which could contribute to the design of practical upper limb neuroprosthetics. In particular, we show the detection of self-paced reaching movement intention in single trials using the readiness potential, an electroencephalography (EEG) slow cortical potential (SCP) computed in a narrow frequency range (0.1-1 Hz). Our experiments with 12 human volunteers, two of them stroke subjects, yield high detection rates prior to the movement onset and low detection rates during the non-movement intention period. With the proposed approach, movement intention was detected around 500 ms before actual onset, which clearly matches previous literature on readiness potentials. Interestingly, the result obtained with one of the stroke subjects is coherent with those achieved in healthy subjects, with single-trial performance of up to 92% for the paretic arm. These results suggest that, apart from contributing to our understanding of voluntary motor control for designing more advanced neuroprostheses, our work could also have a direct impact on advancing robot-assisted neurorehabilitation.
Posted on: June 21, 2012
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
52
Posted on: June 7, 2012
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
52
Programming by Demonstration offers an intu- itive framework for teaching robots how to perform various tasks without having to preprogram them. It also offers an intuitive way to provide corrections and refine teaching during task execution. Previously, mostly position constraints have been taken into account when teaching tasks from demonstrations. In this work, we tackle the problem of teaching tasks that require or can benefit from varying stiffness. This extension is not trivial, as the teacher needs to have a way of communicating to the robot what stiffness it should use. We propose a method by which the teacher can modulate the stiffness of the robot in any direction through physical interaction. The system is incremental and works online, so that the teacher can instantly feel how the robot learns from the interaction. We validate the proposed approach on two experiments on a 7-Dof Barrett WAM arm.
Posted on: June 7, 2012
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
52
Neural signatures of humans’ movement intention can be exploited by future neuroprosthesis. We propose a method for detecting self-paced upper limb movement intention from brain signals acquired with both invasive and noninvasive methods. In the first study with scalp electroencephalograph (EEG) signals from healthy controls, we report single trial detection of movement intention using movement related potentials (MRPs) in a frequency range between 0.1 to 1 Hz. Movement intention can be detected above chance level (p<0.05) on average 460 ms before the movement onset with low detection rate during the on-movement intention period. Using intracranial EEG (iEEG) from one epileptic subject, we detect movement intention as early as 1500 ms before movement onset with accuracy above 90% using electrodes implanted in the bilateral supplementary motor area (SMA). The coherent results obtained with non-invasive and invasive method and its generalization capabilities across different days of recording, strengthened the theory that self-paced movement intention can be detected before movement initiation for the advancement in robot-assisted neurorehabilitation.
Posted on: June 3, 2012
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
52
Central nervous system (CNS) disorders distinctly impair locomotor pattern generation and balance, but technical limitations prevent independent assessment and rehabilitation of these subfunctions. Here we introduce a versatile robotic interface to evaluate, enable and train pattern generation and balance independently during natural walking behaviors in rats. In evaluation mode, the robotic interface affords detailed assessments of pattern generation and dynamic equilibrium after spinal cord injury (SCI) and stroke. In enabling mode, the robot acts as a propulsive or postural neuroprosthesis that instantly promotes unexpected locomotor capacities including overground walking after complete SCI, stair climbing following partial SCI and precise paw placement shortly after stroke. In training mode, robot-enabled rehabilitation, epidural electrical stimulation and monoamine agonists reestablish weight-supported locomotion, coordinated steering and balance in rats with a paralyzing SCI. This new robotic technology and associated concepts have broad implications for both assessing and restoring motor functions after CNS disorders, both in animals and in humans. © 2012 Nature America, Inc. All rights reserved.
Posted on: June 1, 2012
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
52
The exploitation of EEG signatures of cognitive processes can provide valuable information to improve interaction with brain actuated devices. In this work we study these correlates in a realistic situation simulated in a virtual reality environment. We focus on cortical potentials linked to the anticipation of future events (i.e. the contingent negative variation, CNV) and error-related potentials elicited by both visual and tactile feedback. Experiments with 6 subjects show brain activity consistent with previous studies using simpler stimuli, both at the level of ERPs and single trial classification. Moreover, we observe comparable signals irrespective of whether the subject was required to perform motor actions. Altogether, these results support the possibility of using these signals for practical brain machine interaction.
Posted on: June 1, 2012
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
52
The market of domestic service robots, and especially vacuum cleaners, has kept growing during the past decade. According to the International Federation of Robotics, more than 1 million units were sold worldwide in 2010. Currently, there is no in-depth analysis of the energetic impact of the introduction of this technology on the mass market. This topic is of prime importance in our energy-dependant society. This study aims at identifying key technologies leading to the reduction of the energy consumption of a domestic mobile robot, by exploring the design space using technologies issued from the robotic research field, such as the various localization and navigation strategies. This approach is validated through an in-depth analysis of seven vacuum cleaning robots. These results are used to build a global assessment of the influential parameters. The major outcome is the assessment of the positive impact of both the ceiling-based visual localization and the laser-based localization approaches.
Posted on: May 31, 2012
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
52
Dielectric minimum energy structures are capable of large actuation stroke, and consist of a pre-stretched dielectric elastomer actuator (DEA) laminated onto a flexible frame, which makes it easy to obtain both simple and complex shapes. We report here on the fabrication and characterization of a prototype capable of one-dimensional bending actuation. For the DEA, several combinations of ion-implanted PDMS membranes and uniaxial pre-stretch ratio were used. The actuator was characterized by measuring the deformation and output force vs. applied voltage. The results showed that the prototype is able to exhibit bending actuation in the range of around 60 deg. Additionally the initial deformation depends on fabrication parameters such as thickness of the materials, pre-stretch ratio as well as dose of implanted ions.
Posted on: May 14, 2012
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
52
Surgical robotics is among the most challenging applications of motion control. Present and future systems are essentially master-slave systems. Our work focuses on force-feedback and haptic interfaces. In this context, we study multimodal haptic interfaces, i.e. The fusion of force-feedback, with other tactile information such as temperature or pressure. First results support the proposition that such multimodal haptic devices can help improve surgeon’s dexterity and motion control. In order to strengthen this point, we investigate the psychophysics of thermal perception. This paper presents a device for temperature feedback that can be integrated in a multimodal haptic console. A finger sized tactile temperature display able to generate temperature gradients under the fingertip is presented along with first measurement results. © 2012 IEEE.
Posted on: May 9, 2012
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in
/home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line
52
Automatic recognition of gestures using computer vision is important for many real-world applications such as sign language recognition and human-robot interaction (HRI). Our goal is a real-time hand gesture-based HRI interface for mobile robots. We use a state-of-the-art big and deep neural network (NN) combining convolution and max-pooling (MPCNN) for supervised feature learning and classification of hand gestures given by humans to mobile robots using colored gloves. The hand contour is retrieved by color segmentation, then smoothened by morphological image processing which eliminates noisy edges. Our big and deep MPCNN classifies 6 gesture classes with 96% accuracy, nearly three times better than the nearest competitor. Experiments with mobile robots using an ARM 11 533MHz processor achieve real-time gesture recognition performance. © 2011 IEEE.
Posted on: May 9, 2012