Publication: Concurrent Optimization of Mechanical Design and Locomotion Control of a Legged Robot
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 52
This paper introduces a method to simultaneously optimize design and control parameters for legged robots to improve the performance of locomotion based tasks. The morphology of a quadrupedal robot was optimized for a trotting and bounding gait to achieve a certain speed while tuning the control parameters of a robust locomotion controller at the same time. The results of the optimization show that a change of the structure of the robot can help increase its admissable top speed while using the same actuation units.
Reference
- Detailed record: https://infoscience.epfl.ch/record/200255?ln=en
- EPFL-CONF-200255
Posted on: July 16, 2014