Publication: Brain-Controlled Wheelchairs: A Robotic Architecture
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 52
Independent mobility is core to being able to perform activities of daily living by oneself. However, powered wheelchairs are not an option for a large number of people who are unable to use conventional interfaces, due to severe motor–disabilities. Non-invasive brain–computer interfaces (BCIs) offer a promising solution to this interaction problem and in this article we present a shared control architecture that couples the intelligence and desires of the user with the precision of a powered wheelchair. We show how four healthy subjects are able to master control of the wheelchair using an asynchronous motor–imagery based BCI protocol and how this results in a higher overall task performance, compared with alternative synchronous P300–based approaches.
Note:
The original accepted preprint was entitiled: "The Robotic Architecture of an Asynchronous Brain–Actuated Wheelchair"
Reference
- Detailed record: https://infoscience.epfl.ch/record/181698?ln=en
- EPFL-ARTICLE-181698
- doi:10.1109/MRA.2012.2229936