Publication: Towards Long-Term Collective Experiments
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 51
Warning: Use of undefined constant citation_author - assumed 'citation_author' (this will throw an Error in a future version of PHP) in /home/clients/89f5f0444c120951cfdb7adc5e3aa2bf/web/dev-nccr-robotics/wp-content/themes/nccr-twentyseventeen-child/template-parts/post/content-publication.php on line 52
It is often challenging to manage the battery supply when dealing with a fleet of mobile robots during long experiments. If one uses classical recharge stations, then agents are immobilized during the whole recharge process. In this study, we present a novel approach that employs a battery pack swapping station. Batteries are charged in a rotating barrel, and the robots dock only for the time of the hot-swap process. We attained an unavailability time of only 40 seconds, with a success rate of 100 % on a total of 46 trials. Experiments above 8 hours are performed in three arenas with different configurations, which proves the relevance of our approach.
Reference
- Detailed record: https://infoscience.epfl.ch/record/176106?ln=en
- EPFL-CONF-176106
- doi:10.1007/978-3-642-33932-5_64
- View record in Web of Science
Posted on: April 10, 2012