
A second advantage of this fibre is that if the metallic core breaks, it just needs heating and voila! The fibre is fixed! And to top it off, the changing of states occurs in tens of seconds (depending on the current injected and the dimension of the LMPA core).
The fibre has a myriad of real-world applications in the fields of mobile robots, wearable devices and soft systems. Currently the team is using the fibre to create multi-purpose foldable drones. In fact, the fibre can be morphed into different shapes that are preserved after cooling, ie the four arms of the drone can take different functional morphologies, i.e. deployed in a quadrotor-like configuration for aerial locomotion or bent towards the ground in a four-wheeled configuration for terrestrial locomotion.
Future applications that the team is investigating include in endoscopes and other medical applications, where instruments need to be soft and pliable as they are exploring delicate body cavities, but then need to be able to penetrate resistive biological tissues (e.g. for a biopsy) once they have reached their desired location.
Reference
Tonazzini, A., Mintchev, S., Schubert, B., Mazzolai, B., Shintake, J. and Floreano, D. (2016), Variable Stiffness Fiber with Self-Healing Capability. Adv. Mater.. doi:10.1002/adma.201602580